
Pattern Recognition

Examination, February 10, 2005, 9:00–12:00

The problems are to be solved within 3 hrs. The use of supporting material
(books, notes) is not allowed. A calculator may be used, but is not required.
In each of the five problems you can achieve up to 2 points, with a total maximum
of 10 points. The exam is “passed” with 5.5 or more points.

1. Basics

a) Explain the term “overfitting of a decision boundary”, draw a sketch of a
simple example in the context of classification (not regression) in a two–
dimensional feature space.

b) Consider the following sets of feature vectors, representing
class 1: S1 = {(2, 6), (3, 4), (3, 8), (4, 6)} and
class 2: S2 = {(3, 0), (3,−4), (1,−2), (5,−2)} , respectively.
They originate from two two-dimensional normal distributions. Compute
the covariance matrices for each class from the sample data and write down
the corresponding bivariate normal densities. Use naive Maximum Likeli-
hood estimates, here.

c) Assuming equal prior probabilities, evaluate the optimal decision boundary
between the classes based on the densities obtained in part b).

2. Minimum error rate classification

Consider a simple, binary classification problem which is based on a single feature
x. Assume that the corresponding class conditional probabilities are
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The classifier decides for ω1 if x < x∗ and else decides for ω2.

a) Which value of the decision boundary x∗ gives the lowest expected classifi-
cation error if the prior probabilities are P (ω1) = P (ω2) = 1/2 ? Visualize
the situation, i.e. sketch the class conditionals and mark x∗.

b) Assume the value x∗ from part a) is used, although the true priors are
P (ω1) > 1/2 and P (ω2) = 1 − P (ω1). Does the expected classification
error increase, decrease, or remain the same in comparison with the case
P (ω1) = 1/2?

c) Is the optimal boundary for P (ω1) > 1/2 greater or smaller then x∗ for
P (ω1) = 1/2?

Remarks:
Explicit calculations are not necessary here. You can exploit symmetries and
use plausibility arguments, instead. However, it is not sufficient to “guess” the
correct results, explain your answers!



3. Density estimation

a) Define and explain Maximum Likelihood (ML) estimation in the context of
density estimation.

b) What are the ML estimates of mean and variance in case of a unidimensional
normal distribution as obtained from sample data {x1, x2, . . . , xn}? (Just
write down the estimates, you don’t have to show that they maximize the
likelihood.)

c) The ML estimate of the variance is a so-called biased estimate. Explain
precisely what this means (you don’t have to prove that the estimate is
biased). Write down an alternative, unbiased estimate of the variance.

4. Kullback–Leibler divergence
An important measure of the difference between two distributions in the same
space is the so–called Kullback–Leibler (KL) divergence. For two densities p1(x)
and p2(x) (real random number x) it is defined as
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a) Suppose we want to approximate an arbitrary distribution p1(x) by a nor-
mal density p2 = N(µ, σ2) with adjustable mean value µ and adjustable
variance σ2. Show that the “obvious” choice

µ = ε1[x] and σ2 = ε1[(x − µ)2]

satisfies the necessary conditions for minimizing the KL divergence. Here,
ε1 denotes the expectation over p1.

b) One can show that the KL divergence is non-negative (you don’t have to
show it). Hence, it is sometimes called the KL distance. Explain why this
“distance” is not a metric in the space of distributions p(x). It is sufficient
to argue that one of the properties of metrics is violated.

5. K–Means algorithm

a) What is the purpose of the K–Means algorithm? Present the algorithm in
terms of a “pseudocode computer program” and sketch an example scenario
for a two–dimensional feature space.

b) What is the essential difference between the K–Means algorithm and the
Fuzzy K–Means algorithm (in words, no mathematical definition of the alg.
required) ? What is, supposedly, the advantage of Fuzzy K–Means?


